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Abstract Mitochondrial dysfunction and oxidative stress
contribute to several neurologic disorders and have recently
been implicated in acquired epilepsies such as temporal
lobe epilepsy (TLE). Acquired epilepsy is typically initiated
by a brain injury followed by a “latent period” whereby
molecular, biochemical and other cellular alterations occur
in the brain leading to chronic epilepsy. Mitochondrial
dysfunction and oxidative stress are emerging as factors
that not only occur acutely as a result of precipitating
injuries such as status epilepticus (SE), but may also
contribute to epileptogenesis and chronic epilepsy.
Mitochondria are the primary site of reactive oxygen
species (ROS) making them uniquely vulnerable to oxida-
tive damage that may affect neuronal excitability and
seizure susceptibility. This mini-review provides an over-
view of evidence suggesting the role of mitochondrial
dysfunction and oxidative stress as acute consequences of
injuries that are known to incite chronic epilepsy and their
involvement in the chronic stages of acquired epilepsy.
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Introduction

Mitochondrial dysfunction and oxidative stress are recog-
nized as playing a contributing role in several neurological
disorders, and most recently have been implicated in

acquired epilepsies. Mitochondrial dysfunction has been
directly associated with a small percentage of inherited
epilepsies such as myoclonic epilepsy with ragged red
fibers (MERRF) and mitochondrial encephalopathies but its
role in acquired epilepsies, which accounts for approxi-
mately 60% of all epilepsy cases, remains to be fully
explored. Temporal lobe epilepsy (TLE) is the most
prominent example of acquired epilepsy which is common-
ly preceded by an initial brain injury such as an episode of
prolonged seizures or status epilepticus (SE), childhood
febrile seizures, hypoxia or trauma. These preceding events
induce a series of complex molecular, biochemical,
physiological, and structural changes in the brain that
contribute to the subsequent onset of spontaneous seizures,
or “epileptogenesis.” Compelling evidence for mitochon-
drial dysfunction in acquired epilepsy comes from the
observation that metabolic and bioenergetic changes occur
following acute seizures and during different phases of
chronic epilepsy. For example, acutely following seizures
associated with SE a significant increase in cellular glucose
uptake and metabolism occurs. Cerebral blood flow is
increased to match this hypermetabolism and there is an
increased lactate build up due to the increased rate of
glycolysis exceeding pyruvate utilization. While hyperme-
tabolism occurs in the human epileptic foci during seizure
events, hypometabolism is prominent between seizure
episodes. Mitochondria are suggested to be involved in
altered neurotransmitter metabolism based on the loss of
mitochondrial N-acetyl aspartate in human epileptic tissue
(Savic et al. 2000; Vielhaber et al. 2008). Additionally,
severe metabolic dysfunction characterized by biphasic
abnormal NAD(P)H fluorescence transients and changes
in mitochondrial membrane potential (dsm) have been
observed in ex vivo preparations from both chronically
epileptic rats and human subjects (Kann et al. 2005).
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Mitochondria subserve important functions such as the
generation of ATP, metabolite/neurotransmitter biosynthe-
sis, calcium homeostasis, control of cell death and are the
primary site of reactive oxygen species (ROS) production.
The latter renders mitochondria particularly vulnerable to
oxidative damage that may play a critical role in controlling
neuronal excitability and subsequent seizure susceptibility
associated with acquired epilepsy. ROS function as second
messengers in signal transduction but are also mediators of
oxidative damage and inflammation. The detailed mecha-
nisms by which mitochondria control acute seizure-induced
neuronal injury and/or chronic seizure activity associated
with acquired epilepsies such as TLE have not been fully
elucidated. Seizure-induced overproduction of mitochon-
drial superoxide radicals (O2

.−) (Liang et al. 2000) can,
through the Fenton reaction, produce more highly reactive
species such as hydroxyl radical (OH.−) in the presence of
Cu2+ and Fe2+ which readily oxidize proteins, lipids, and
DNA potentially altering neuronal excitability and thereby
decreasing seizure threshold during epileptogenesis. The
brain is uniquely vulnerable to oxidative stress-induced
damage due to a large quantity of mitochondria, a high
degree of oxidizable lipids and metals, high oxygen
consumption, and less antioxidant capacity than other
tissues making oxidative stress a likely contributor to
neurological disorders such as the epilepsies. In this mini-
review we provide a brief overview of the evidence
suggesting the role of oxidative stress and mitochondrial
dysfunction as acute consequences of injuries that are
known to incite chronic epilepsy and their involvement in
the chronic stages of acquired epilepsy.

Mitochondrial dysfunction and oxidative stress: acute
consequences of injuries inciting acquired epilepsies

Acute increases in mitochondrial oxidative stress and
subsequent damage to cellular macromolecules have been
demonstrated following repeated seizures i.e. SE (Bruce
and Baudry 1995; Gluck et al. 2000; Liang et al. 2000;

Patel et al. 2001; Tejada et al. 2007; Jarrett et al. 2008a;
Waldbaum et al. 2010). In addition to SE, other injuries that
are capable of leading to chronic acquired epilepsies such
as hypoxic-ischemic insults, traumatic brain injury, viral
infection and hyperthermia can individually produce mito-
chondrial dysfunction and oxidative stress (Ozawa et al.
2002; Gil et al. 2003; Xu et al. 2004; Chang et al. 2007;
Bhargava et al. 2010; Mustafa et al. 2010; Schwarzbold et
al. 2010). This suggests that mitochondrial dysfunction may
be at least one final common factor that contributes to
epileptogenesis. One important and immediate consequence
of injury-induced oxidative stress may be neuronal death.
Seizure-induced neuronal death in vulnerable brain regions
is model-specific and dependent on the developmental age
(Rakhade and Jensen 2009) and genetic background of
animals (Schauwecker and Steward 1997; Mohajeri et al.
2004). Several key studies suggest a mechanistic role for
mitochondrial dysfunction and ROS in SE-induced neuro-
nal death. First, SE results in increased oxidation of cellular
macromolecules prior to the death of vulnerable neurons
and certain compounds that possess antioxidant properties
(superoxide dismutase (SOD) mimetics, vitamin C, spin
traps and melatonin) prevent seizure-induced neuronal
death (Tan et al. 1998; Tang et al. 1998; Liang et al.
2000; Mohanan and Yamamoto 2002; Yamamoto and
Mohanan 2003; Barros et al. 2007; Xavier et al. 2007).
Secondly, oxidative stress has been suggested to be a
significant consequence of excitotoxicity, which plays a
critical role in epileptic brain damage. Thirdly, seizure-
induced neuronal death involves calcium overload (Ding et
al. 2007; Weiergraber et al. 2007; Deshpande et al. 2008) as
well as both necrosis and apoptosis, which are all partly
controlled by mitochondrial function and oxidative stress.
Finally, the occurrence of seizure-induced oxidative stress
is dependent on the developmental age of animals much
like seizure-induced neuronal death (Patel and Li 2003).

Numerous studies demonstrate acute increases in sub-
cellular ROS production and oxidative damage following
SE. Increased ROS production has been demonstrated from

Fig. 1 Time-course of mito-
chondrial oxidative stress and
subsequent damage during epi-
leptogenesis. Note the initial and
persistent decrease in mitochon-
drial and tissue redox status
(CoASH/CoASSG, GSH/
GSSG) throughout epileptogen-
esis which may serve an ongo-
ing link to chronic epilepsy
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isolated mitochondria or with the use of surrogate markers
for protein and DNA oxidation (Bruce and Baudry 1995;
Gluck et al. 2000; Liang et al. 2000; Patel et al. 2001;
Tejada et al. 2007; Jarrett et al. 2008a; Waldbaum et al.
2010). The latter include protein, lipids, and DNA that are
modified by ROS and are stable enough to be analyzed by
reliable quantitative methods assessed following
chemoconvulsant-induced SE. Notably, maximal inactiva-
tion of mitochondrial aconitase has been demonstrated 16 h
post-SE in the kainate model (KA) and at times preceding
the death of susceptible hippocampal neurons (Liang et al.
2000). Recent work from our laboratory has demonstrated
an acute increase in mitochondrial hydrogen peroxide
(H2O2) production, an index of mitochondrial oxidative
stress, and oxidative damage to mitochondrial DNA
(mtDNA) up to 96 h following KA- and lithium-
pilocarpine (Li-Pilo)-induced epileptogenesis (Jarrett et al.
2008a; Waldbaum et al. 2010). Lipid peroxidation, the
unspecific oxidation of polyunsaturated fatty acids, is a
pathwaymediated by free radicals that can be used as an index
of irreversible neuronal damage of cell membrane phospho-
lipids suggested as a mechanism of epileptic activity (Dal-
Pizzol et al. 2000). Malondialdehyde (MDA) has been used
to identify oxidative damage to lipids acutely following
seizure events (Dexter et al. 1989; Cini and Moretti 1995)
and their levels have been reported to be increased up to 16 h
following KA treatment in the hippocampus (Bruce and
Baudry 1995), up to 24 h in an amygdala kindling model of
epilepsy (Frantseva et al. 2000), and 2 h post-pilocarpine-
induced SE in the cortex (Tejada et al. 2007). The
thiobarbituric acid reactive substances (TBARS) assay
revealed increased lipid oxidation following KA-induced
seizures as early as 4 h in the cortex, hippocampus, basal
ganglia, and cerebellum, which remained elevated at 24 h in
the hippocampus and cerebellum (Gluck et al. 2000). In the
Li-Pilo model, increased whole brain free fatty acids (FFA),
a marker of membrane phospholipid metabolism, have been
reported 1 and 2.5 h post-treatment (Erakovic et al. 2000)
and hydroperoxide has been reported to be increased at 1 h
post-pilocarpine treatment (Bellissimo et al. 2001). A large
increase in stable arachidonic acid derived prostaglandin
products of lipid oxidation, including F2-isoprostanes
(F2-IsoP) and isofurans (IsoFs) has been shown early after
SE in hippocampal subregions (Patel et al. 2001). Cellular
dysfunction resulting from lipid peroxidation may lead to a
compromise in a cells capability to maintain energy levels,
energy failure, and the triggering of events leading to
neuronal injury and death. Interestingly, the highest levels
of SE-induced formation of F2-IsoPs and IsoFs occur in the
dentate gyrus in which injury-resistant granule neurons
reside (Patel et al. 2001; Patel et al. 2008) which suggests
alternate roles besides neuronal death of these lipid perox-
idation end products.

In studies where KA was administered directly into the
CA3 hippocampal subregion producing seizures, depressed
activity of nicotinamide adenine dinucleotide cytochrome c
reductase (NCCR), a marker for electron transport chain
(ETC) complex I and III, was observed at 180 min post-
injection in all hippocampal subfields (Chuang et al. 2004).
These changes were accompanied by swelling of mito-
chondrial spaces and membrane disruption, suggesting that
complex I enzyme dysfunction and mitochondrial ultra-
structural damage in the hippocampus were associated with
prolonged seizures. An acute increase in mitochondrial but
not nuclear 8-OHdG/2dG, an oxidatively modified guanine
adduct, has been demonstrated 16–48 h following KA-
induced SE which coincided with increased mtDNA lesion
frequency, mitochondrial H2O2 production and decreased
aconitase activity and a transient decrease in mtDNA repair
(Jarrett et al. 2008a). A decrease in the intracellular
antioxidant, glutathione (GSH), and increased H2O2 pro-
duction and mtDNA damage was observed 24–96 h in the
hippocampus after Li-Pilo treatment (Waldbaum et al.
2010). In the kindling model, a persistent decrease in
GSH was observed as early as 4 h post stimulation in the
hippocampus which preceded a transient decrease in
mitochondrial ETC complex I activity and aconitase levels,
suggesting GSH as an early and critical determinant of later
neuronal death and dysfunction (Sleven et al. 2006).
Following KA-induced SE, our laboratory has shown an
acute decrease in mitochondrial GSH/GSSG and tissue
CoASH/CoASSG as early as 8 h and up to 7 d from the
hippocampus (Liang and Patel 2006). Finally, pilocarpine-
induced SE has been reported to decrease GSH in the
hippocampus 24 h post-treatment (Freitas et al. 2005).

In summary, SE and other epileptogenic injuries result in
increased ROS formation and oxidative damage to proteins,
lipids and DNA. Furthermore, although plasma membrane/
extracellular sources contribute to SE-induced ROS forma-
tion (Patel et al. 2005), the predominant source is the
mitochondrial compartment. Thus, current studies have
established mitochondrial dysfunction and oxidative stress
as an acute consequence of seizure activity but the question
remains whether these alterations can further contribute to
chronic epilepsy.

Mitochondrial dysfunction and oxidative stress in chronic
acquired epilepsy

Evidence of mitochondrial dysfunction and oxidative stress
during chronic epilepsy has recently emerged from animal
studies (Kudin et al. 2002; Chuang et al. 2004; Gao et al.
2007; Jarrett et al. 2008a; Waldbaum et al. 2010) and
human TLE specimens (Kunz et al. 2000; Mueller et al.
2001; Sudha et al. 2001; Vielhaber et al. 2008). Work from
our laboratory has demonstrated a time-dependent increase
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in mitochondrial H2O2 production, oxidative damage to
mtDNA, and decreased mtDNA repair capacity prior to and
during recurrent epilepsy following KA-induced epilepto-
genesis (Jarrett et al. 2008a). An increase in mitochondrial
oxidative stress and mtDNA damage prior to and during
recurrent epilepsy has also been shown in the Li-Pilo model
of SE (Waldbaum et al. 2010). A key finding of the Jarrett
et al. (2008a) study was that failure of adaptive responses to
ongoing oxidative stress in the brain during epileptogenesis,
such as mtDNA repair, could lead to an increase in seizure
susceptibility. The mitochondrial base excision repair
pathway (mtBER) involves a highly coordinated process
catalyzed by the sequential actions of the DNA repair
enzymes 8-oxoguanine glycosylase (Ogg1) and DNA
polymerase gamma (Pol γ). Ogg1 and Pol γ mRNA and
protein levels have been shown to be elevated following
KA-induced SE but decreased during chronic epilepsy
(Jarrett et al. 2008a). Spontaneous seizures coincided with
accumulation of mtDNA damage, increased mitochondrial
H2O2, decreased Ogg1 and Pol γ, and impaired mtDNA
repair in this study, suggesting a role for the contribution of
mitochondrial injury to epileptogenesis.

Mitochondrial dysfunction during chronic epilepsy is
evident by decreased ETC complex I and IV activity,
increased complex II activity, and lowered mitochondrial
membrane potential measured by rhodamine 123 fluores-
cence in the hippocampal CA1 and CA3 regions 1 month
following pilocarpine-induced SE (Kudin et al. 2002).
These alterations may be attributed to chronic oxidative
stress decreasing mtDNA copy number resulting in down
regulation of ETC enzymes that they encode. The accumu-
lation over time of oxidative mtDNA lesions and resultant
somatic mtDNA mutations resulting from seizure activity
could render the brain more susceptible to subsequent
epileptic seizures. Further, ultrastructural damage to mito-
chondria has been observed in the hippocampus of
chemoconvulsant-treated epileptic rats (Chuang et al.
2004). Forty five days post-pilocarpine-induced SE, mito-
chondrial encoded complex IV subunit III decreased while
nuclear encoded subunit IV remained unchanged along with
nuclear encoded complex II in the hippocampus (Gao et al.
2007). The link between mitochondrial dysfunction and
epilepsy is further supported by the finding that certain
patients with TLE show mitochondrial complex I deficien-
cy in the seizure foci (Kunz et al. 2000) and aconitase
activity is decreased in the CA3 hippocampal subregion of
human cases of TLE (Vielhaber et al. 2008). Mice that are
partially deficient in MnSOD (SOD2) (Sod2−/+) show
evidence of exacerbated KA-induced mitochondrial aconi-
tase inactivation and hippocampal neuronal loss (Liang and
Patel 2004), while over expressing SOD2 mice showing
both are attenuated (Liang et al. 2000). Additionally, the
expression of the glutamate transporters, GLT-1, GLAST,

and EAAC-1 were reported to decrease in epileptic Sod2−/+

mice at increasing ages (Liang and Patel 2004). The
decrease in hippocampal GLT-1 and GLAST in Sod2−/+

mice coincided with decreased aconitase activity as well as
increased mitochondrial oxidative stress and seizure sus-
ceptibility which may explain the age-related vulnerability
of a subset of these mice to epileptic seizures. Additionally,
the levels of GLAST protein was reportedly lower in
samples from epileptic patients than controls (Tessler et al.
1999) and a decrease in GLT-1 expression was reported in
the hippocampus of sclerotic tissue obtained from resected
TLE patients (Mathern et al. 1999). Decreased levels of
glutamine synthetase (GS), the enzyme responsible for
converting glutamate to glutamine, have been reported
following hippocampal sclerosis (Petroff et al. 2002; Eid et
al. 2004; van der Hel et al. 2005) and an increase in
glutamine and glutamate in the thalamus in epileptic
patients has been reported (Helms et al. 2006). In the KA
model, a transient increase in GS expression was reported
during the “latent period” which was reduced during the
transition to the chronic phase of epilepsy suggesting a
decreased capacity for glutamate metabolism as spontane-
ous and recurrent seizures became evident (Hammer et
al. 2008). Thus, recent evidence supports the role of
mitochondrial oxidative stress not merely as a conse-
quence of seizures, but an active contributor to seizures
and epileptogenesis.

Can redox alterations during the “latent period” provide
a link between acute and chronic oxidative events?

An important question that emerges from these studies is,
does acute injury-induced ROS formation contribute mech-
anistically to chronic epilepsy? Furthermore, which mito-
chondrial and cellular alterations may be occurring during
the “latent period” between initial brain injury and the onset
of spontaneous and recurrent seizures so as to facilitate the
progression of chronic epilepsy? Could a widespread
cellular and sub-cellular oxidized environment be present
that has the potential to induce structural damage to
mitochondrial membranes, changes in mitochondrial en-
zyme activities and membrane potential, and subsequent
mitochondrial dysfunction potentially affecting neuronal
excitability? As noted above, increased mitochondrial H2O2

production during epileptogenesis occurs in a bi-phasic
manner. Early SE-induced ROS is accompanied by adaptive
mtDNA repair and chronic ROS production is accompanied
by a failure of mtDNA repair induction (Jarrett et al.
2008a). Although the production of mitochondrial H2O2

returns to control levels during the “latent period”,
measurement of more sensitive indices of oxidative stress
e.g. mitochondrial and tissue redox status suggest the
occurrence of ongoing oxidative stress particularly in the
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mitochondrial compartment during the “latent period”
(Waldbaum et al. 2010) (Fig. 1). Redox couples such as
GSH and its disulfide (GSSG) serve as biomarkers of
oxidative stress (Reed and Savage 1995; Liang and Patel
2006) and coenzyme A (CoASH) and its disulfide with
GSH (CoASSG), which are primarily compartmentalized
within mitochondria, can be measured as a marker of
mitochondrial specific redox status (Liang and Patel 2006).
Hippocampal GSH/GSSG and CoASH/CoASSG following
Li-Pilo-induced SE have been recently demonstrated to
decrease by 24 h and remain permanently impaired
throughout epileptogenesis and chronic epilepsy even when
measurements of H2O2 production and mtDNA damage
returned to control levels (Waldbaum et al. 2010). These
changes in redox state during epileptogenesis began prior to
the reported occurrence of neuronal death in the hippocam-
pus (Liang et al. 2000) and may contribute to it as well as
causing significant mitochondrial dysfunction (Jain et al.
1991; Werner and Cohen 1993) potentially affecting
neuronal excitability through ETC dysfunction and de-
creased ATP production (Fig. 1). A decrease in both GSH
levels and glutathione reductase (GR) activity has been
reported in brain regions and plasma of epileptic patients
(Mueller et al. 2001; Sudha et al. 2001). A profound and
persistent oxidation of GSH to GSSG and depletion of total
GSH during epileptogenesis, including the “latent period,”
would favor post-translational modifications such as S-
glutathionylation and/or S-nitrosylation of sensitive targets
e.g. ion channels and energy-dependent transporters that
could ultimately alter neuronal excitability. Therefore,
altered cellular and mitochondrial redox status may play
an important mechanistic link between acute and chronic
stages of epilepsy.

Therapies targeting mitochondrial bioenergetics

Novel therapies targeting mitochondrial bioenergetics and
oxidative stress that are neuroprotective and ameliorate
consequences of SE may be useful in the management of
epilepsy and attenuation of its development. An increasing
number of SOD mimetics have been developed to over-
come the inherent limitations of natural antioxidant com-
pounds such as catalase and vitamins C and E. MnTBAP
and the salen EUK compounds have been shown to
attenuate oxidative stress and neuronal damage induced
by SE or a deficiency in SOD2 (Liang et al. 2000; Melov et
al. 2001; Hinerfeld et al. 2004). The metalloporphyrin
catalytic antioxidants contain a manganese center that are
capable of detoxifying a wide range of ROS (Patel and Day
1999) and several water-soluble compounds have been
shown to be effective in animal models of epilepsy (Liang
et al. 2000). N,N′-bis (2-hydroxybenzyl) ethylenediamine-
N,N′-diacetic acid (HBED), a synthetic iron chelator,

administered systemically ameliorated SE-induced altera-
tions, mtDNA damage, GSH depletion, and hippocampal
cell loss, suggesting subcellular iron chelation as a novel
therapeutic approach for seizure management (Liang et al.
2008). The ketogenic diet (KD), based on the intake of
high-fat/low-carbohydrate/low-protein leading to a switch
from glucose metabolism to the generation and metabolism
of ketones, has been administered as a means of attenuating
seizures. Recent evidence suggests that chronic consump-
tion of a KD may alter mitochondrial function by
chronically decreasing production of ROS, increasing the
expression of uncoupling proteins, promoting mitochondri-
al biogenesis, stimulating GSH biosynthesis, and activating
the NF E2-related factor 2 (Nrf2) pathway via redox
signaling leading to cellular adaptation, induction of
protective proteins, and improvement of mitochondrial
redox state (Sullivan et al. 2004; Bough et al. 2006; Jarrett
et al. 2008b; Milder et al. 2010). These findings raise the
possibility that targeting mitochondrial dysfunction may in
the future provide therapeutic avenues for the successful
treatment of epilepsies.
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